ENTREPRENEURIAL DNA
And What That Means for Your Business

First They Were "KNICKLEBUSTERS"

Special Report
APPENDIX F AND FLORIDA BUILDING CODE EDITION 6
A WIN FOR FIS
elements™ series

An Authentic Style, a Unique Construction
The Elements™ Series was designed with ease of installation in mind. A sophisticated E-Shield™ process ensures durability while the innovative FLEX™ Auxiliary Wire Lead provides unmatched flexibility.

Industry Leading Warranty
Superior Corrosion Resistance
Exclusive Coating Process
Brass Threaded Stakes

Call your local representative:
Debra Burke - (407) 619-0856 (East Coast FL)
Jhy Musselman - (863) 651-2679 (West Coast FL)

www.uniquelighting.com • 800.955.4831
The Official Publication of the Florida Irrigation Society

TABLE OF CONTENTS

FEATURES
Entrepreneurial DNA ... 6
First There Were “Knucklebusters…” 11
Special Report: Appendix F and Florida Building Code
 Edition 6 – A Win for FIS ... 15

DEPARTMENTS
President’s Letter ... 2
Legislative News ... 4
Calendar of Events .. 34
Membership Application ... 41

On the Cover:
Photo submitted by Pro Care Landscaping & Design Inc.
Greetings Fellow Irrigators,

I am honored to assume the role of Florida Irrigation Society President during its 50th year of serving, mentoring and promoting our industry. I look forward to working with the familiar faces and names that I have come to know and respect for the last 30+ years. I also welcome the opportunity to get to know a lot of new faces and companies as we attempt to broaden our membership base and help develop a fresh new wave of dedicated irrigation professionals. We all know that the future of any trade or industry depends on its ability to reach out to the next generations of professionals and help them strive for a better set of standards and professionalism.

Finding and identifying the future irrigators is the challenge. Where are they? How do we reach them? How will they progress?

Looking back I can say that the industry has seen a lot of changes. First, technology advances have shown that we can manage our water supply to ensure we have enough fresh water to handle Florida’s population projections. Second, irrigation work is now being performed with more diversified companies with employees that are often moved from one job description to another. Some of these companies have very good cross training programs but most do not. There is a wide variety of training and mentoring happening today from very little to some very good company programs. To better utilize the technology advances, we need to focus on providing proper education and training opportunities. This is where

The Florida Irrigation Society can and does make a difference. I urge all members to support our efforts by attending our functions and recruiting non members to take part as well.

Our efforts for statewide industry standards, water efficient legislation, state licensing and continuing education are paramount to the success and future existence of our trade. Our association is very much involved in all these areas. As Florida’s water politics become more complex it will be up to us to ensure that we preserve our right to go to work. It takes but one or two ill thought out ordinances or statutes to get the ball rolling against our efforts to keep our work force moving. We will continue to inform the legislators and the general public that we can and will help manage how our water is being used with our knowledge and experience.

New members, professional training, upgrading state and local standards, legislative initiatives, state-wide licensing and continuing education create a circle that is on going and our success depends on all of them coming to fruition. We can’t say when everything will be perfect and in place but this is what we strive for and that is why the Florida Irrigation Society exists. I urge all our members to spread the word proudly about our 50 years of being Florida’s water professionals. Have a great year!

[Signature]
Scott King
Florida Irrigation Society President
Your Complete Outdoor Products Supplier!
Huge Inventory!
Most Popular Products!
35+ Stores Near You!
Large Fleet of Delivery Trucks!
I wanted to let you know that Governor Scott signed the low-voltage lighting exemption into law on March 25, 2016. The exemption passed in HB 535 by Rep. Eagle re: building codes, which is effective July 1, 2016. The companion was SB 704 by Senator Hutson. We need to let Representative Eagle and Senator Hutson know that we appreciate their efforts to get this exemption passed. We should consider giving them both a legislative award.

The low-voltage lighting exemption was also contained in the Department of Business and Professional Regulation’s legislative package, SB 1050 by Senator Brandes and Representative Grant. That legislation got bogged down with amendments late in session and did not pass. However, this was not of concern since it did pass in the building bill.

It may seem early, but it is already time to look forward to the 2016 legislative session. We know we want to move forward with legislation to update
the irrigation statute. I will work with FNGLA to identify appropriate bill sponsors and will keep you posted on those efforts. Representative Beshears is the obvious choice on the House side since he is a former FNGLA President and understands these issues well.

There is not an obvious choice on the Senate side – and indeed, with so many open races following redistricting, the Senate is likely to look much different next year. We need to see how some of these races shape up and choose a Senate sponsor once we have a better idea of who will be there following the General Election. We have more time this year, since bills won’t be filed until after the November elections and session won’t start until next March. However, it will be a narrow timeline once the election is over, so we should have our choice made well before then and have the bill out of drafting and ready for filing if at all possible.

An Additional Issue on the Horizon

FNGLA has identified another issue that we should take a look at over the interim. They are concerned that folks who have agriculture, landscape and/or green industry related degrees that include training on irrigation are not qualified by virtue of their degrees to take the irrigation contractor’s examination. This is a limitation of the current statute, which applies to all contractors. It is currently limited to engineering, architectural, and building construction degrees. It is not clear whether this can be fixed by rulemaking (by defining irrigation as part of building construction, perhaps) or whether it will require legislation. I can work with them to identify a solution, but I would like to discuss this issue with the Board soon and get some feedback first.

I look forward to working on these issues with you and continuing to advance good policies for irrigation contractors and water conservation!
ENTREPRENEURIAL DNA

And What That Means for Your Business

By Rosemary DiDio Brehm - Chief Results Office, turningpoints2results; BOSI Global Partner
I work with many business owners and their teams to help them identify and eliminate the obstacles that get in the way of their productivity, successful results, and most importantly profitability. So I see and hear from them about the dysfunctions they face, especially with their employees:

- Employees don’t hold themselves accountable.
- Employees don’t “think like owners”.
- Employees are missing great opportunities.
- Employees don’t know how to be team members.
- Employees aren’t doing the job we hired them for.

Business owners like you and me also realize how hard it is to run a business AND manage people. We have too much on our plates like:

- How do I get everything done?
- How do I hire the right people?
- How do I get my associates to understand my business?
- How do I understand my employees and make sure I am helping them grow into great employees?

Bottom line is that, as owners, it’s up to us to make our business work and ensure our employees represent us well and get the job done. And often that task is daunting and requires thinking “outside the box”.

That’s especially true in my case! In order to continue to be of value to my clients, I seek new and improved ways to help them “sleep better at night”.

(continued page 8)
night”. So several years ago, I read the best-selling business book - *Entrepreneurial DNA*, by Joe Abraham. I decided to partner with Joe and blend the assessments and methodology into my ongoing practice tools. I found I was able to accelerate my clients’ business results by helping them look at their business from an “entrepreneurial approach”. And what a difference that has made for them because they started to leverage their employees’ skills more productively.

Let’s look at that word “entrepreneur”. Most people conjure up a person who starts a business from scratch and spends hours and hours, and lots of personal money, to make it big. Think Richard Branson, Bill Gates, Elon Musk. I bet many of you would say you aren’t entrepreneurs, you are “just” business owners.

But I am asking you to think of an “Entrepreneur” as “One who takes initiative, organizes, manages and assumes the risks of a business or enterprise.” And isn’t that what you do and what we really want our employees to do to avoid the five dysfunctions I mentioned at the beginning of this article?

They might not assume the financial risk, but employees can jeopardize our financial health if they don’t think and act like someone who cares both about the big picture and the little details.

In fact, whether we own the business or work in the business, we all have Entrepreneurial DNA. And that DNA is our underlying potential to be successful. If you are the Business Owner/Entrepreneur, think of your team as “Intra-preneurs”.

Entrepreneurial DNA – The BOSI Approach

This topic could fill many pages, and I encourage you to read Joe’s book, but let me highlight some key points:

Joe Abraham’s research indicates there are four types of Entrepreneurs

<table>
<thead>
<tr>
<th>Type</th>
<th>Strengths</th>
<th>Development Areas</th>
<th>Impact to Your Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Builder</td>
<td>Wants constant growth, serial business owner</td>
<td>Not happy if business is stagnant; Can be difficult with people</td>
<td>May need people to manage team</td>
</tr>
<tr>
<td>Opportunist</td>
<td>Sees opportunities everywhere, good sales person</td>
<td>May try to have too many “lines of business”; unable to follow up and follow through</td>
<td>Unable to create systems and follow up</td>
</tr>
<tr>
<td>Specialist</td>
<td>Single industry expert, great customer service</td>
<td>Doesn’t like to sell, so pipeline sparse</td>
<td>Sales gaps</td>
</tr>
<tr>
<td>Innovator</td>
<td>Full of creative ideas/new products</td>
<td>No interest (or skill) in running a business</td>
<td>Happy to give product away</td>
</tr>
</tbody>
</table>

Everyone one of us, including our employees, have a combination of these four traits. The key is to ensure we have the folks use their DNA potential in their job. I know companies have specialist on their sales team and wonder why sales aren’t higher. Some have Innovators in charge of implementation and miss every deadline.
For quick, reliable connections trust the genuine article — the one and only Irritrol Super Blue Flex™ Pipe. With up to 120 psi pressure rating and a 5-year warranty, Super Blue Flex won’t let you down. For flexibility you can trust, look for the true blue stripe!
ASK YOURSELF...

• Do we have any Builders in our company? Are they tenacious and risk-ready?

• Are our sales people high Opportunists? Are they action oriented and street smart?

• Are our customer service people Specialists? Are they detailed orientated and customer supportive?

• Do we have Innovators thinking of new services that we can bring to market? Are they creative and resilient?

• Are we in succession planning mode? Who do I bring in after I retire? What DNA best fits my successor and transition team?

• I need to hire a new employee? Do they have the DNA that I may be missing on my team?

Obviously there is much more to say about this topic, but I hope this gets your thought processes churning.

Jim Collins wrote in his book, *Good to Great* (2001) about having the RIGHT people on the bus and in the RIGHT seats. This methodology helps you shift into an “entrepreneurial-focused team” approach.

Special Offer to FIS Pipeline Readers

As a thank you for taking the time to learn about this topic, please take a complimentary Basic Entrepreneurial DNA Assessment. Click on this link -- http://www.turningpoints2results.com/bosi-dna.

Bio - Rosemary DiDio Brehm founded turningpoints2results to help individuals, teams, and business owners “Get Their SHIFT! Together”. turningpoints2results specifically works with clients to assess, clarify and manage strategies, relationships and tasks to produce great results. She helps clients use their innate Entrepreneurial DNA to develop their leadership skills and optimize their teams to create successful performance change.

Lasco Fittings, Inc.

Customer Service: 800-776-2756 • For Irrigation Only
www.lascocffittings.com

Special Offer to FIS Pipeline Readers

As a thank you for taking the time to learn about this topic, please take a complimentary Basic Entrepreneurial DNA Assessment. Click on this link -- http://www.turningpoints2results.com/bosi-dna.

Bio - Rosemary DiDio Brehm founded turningpoints2results to help individuals, teams, and business owners “Get Their SHIFT! Together”. turningpoints2results specifically works with clients to assess, clarify and manage strategies, relationships and tasks to produce great results. She helps clients use their innate Entrepreneurial DNA to develop their leadership skills and optimize their teams to create successful performance change.

Special Offer to FIS Pipeline Readers

As a thank you for taking the time to learn about this topic, please take a complimentary Basic Entrepreneurial DNA Assessment. Click on this link -- http://www.turningpoints2results.com/bosi-dna.

Bio - Rosemary DiDio Brehm founded turningpoints2results to help individuals, teams, and business owners “Get Their SHIFT! Together”. turningpoints2results specifically works with clients to assess, clarify and manage strategies, relationships and tasks to produce great results. She helps clients use their innate Entrepreneurial DNA to develop their leadership skills and optimize their teams to create successful performance change.

Special Offer to FIS Pipeline Readers

As a thank you for taking the time to learn about this topic, please take a complimentary Basic Entrepreneurial DNA Assessment. Click on this link -- http://www.turningpoints2results.com/bosi-dna.

Bio - Rosemary DiDio Brehm founded turningpoints2results to help individuals, teams, and business owners “Get Their SHIFT! Together”. turningpoints2results specifically works with clients to assess, clarify and manage strategies, relationships and tasks to produce great results. She helps clients use their innate Entrepreneurial DNA to develop their leadership skills and optimize their teams to create successful performance change.

Lasco Fittings, Inc.

Customer Service: 800-776-2756 • For Irrigation Only
www.lascocffittings.com

Lasco Fittings, Inc.

Customer Service: 800-776-2756 • For Irrigation Only
www.lascocffittings.com

Lasco Fittings, Inc.

Customer Service: 800-776-2756 • For Irrigation Only
www.lascocffittings.com
FIRST THERE WERE “KNUCKLEBUSTERS…”

By Larry Fiorella, Vecter Technologies

As a merchant, you may never have experienced a “knucklebuster.” No, I’m not talking about brass knuckles, the ones the bad guys used to clench in their fist to make a punch feel like a sledgehammer. But rather, the earliest phase of credit card processing, long before the age of technology. Twenty plus years ago, processing a credit card required a special metal carrier to hold the charge card. A transaction slip was placed on top of the card, which was then scrunched into the credit card’s raised letters and numbers by forcing a sliding pressure plate over it one way, then back the other. That hard-handed sliding effort led to what became referred to as a “knucklebuster” due to the constant abuse to one’s hand. Of course we’ve had many advances in credit card processing since that primitive routine, now there’s about to be another major jump forward!

The U.S. is about to catch up with Europe, Canada, Japan and other nations in the world who have transitioned credit card processing into the latest, safest, and fastest technology, and for good reason.

Surprisingly, the winners in this new process will favor consumers – and merchants!

The acronym for the new technology is EMV, which stands for Europay, MasterCard, Visa. What it boils down to is the addition of a Smart Chip embedded in all future credit and debit cards, starting somewhere around now. Each card will contain its owner’s account identification on the chip and transactions will have greater security.

Fear not, the new Smart Chip cards will still have the magnetic strip on the back since not all merchants will have EMV.

(continued page 12)
terminals by October, when the EMV transition is scheduled to begin. That in itself might seem like a problem since some merchants may be in no hurry to adopt EMV readers in the middle of the fall and holiday season, believing they’ll take months, or years to implement and to recoup the costs.

But what if there was no charge to a merchant to install EMV terminals? Would that hasten the process and reduce the anxiety? Check that out if you’re a small business merchant concerned about a big expense you’d rather not implement right away. But if you’d like another inducement to expedite EMV with a smile, consider the seriously improved security and reduced vulnerability factors that come with EMV!

With the present credit card processing system, the volume of stolen card accounts and associated losses is gigantic as you well know. But with EMV you’ll have the magic of its built-in automated data working for you. Every time a consumer inserts an EMV card into a Smart Chip terminal, the card will create a unique, one-time digital signature for that specific transaction. If an EMV card number is stolen or hacked, it will be useless since the hacked number won’t work again. Each use of the card will create a new digital signature, greatly reducing fraudulent use. With this technology, liability for loss shifts
to the merchant, away from the card issuer, so a major reduction in card theft should be welcome since it will mean significant reductions in dollar losses to your business.

Be on guard though! There is NO law, NO government mandate and NO fines or punishment for failure to implement EMV terminals. And don’t fall for any pitch trying to sell or lease them. If you have any questions or need advice about EMV, contact Larry Fiorella at 844-852-0855 or at lfiorella@vectervb.com.

Vecter is a business partner. If you’d like additional information about merchant services, please contact Larry directly.

MAXIMUM EFFICIENCY STARTS WITH YOUR PUMP

Watertronics® offers integrated pump systems and controls that help maintain consistent, surge-free water delivery for optimum pressure regulation.

- Factory-assembled and tested for fast, hassle-free installation
- Advanced reporting on power, water, and even water quality
- Remote monitoring anytime, anywhere with Waterview Cloud
- Design, build, and service for all applications

Call us today to discuss your next project. 800-356-6686 or visit watertronics.com

© 2018 Lindsay
Save water and make a difference.

Join the Project PRS challenge.

Project PRS challenges contractors to save more water by using Rain Bird® 5000 Series Rotors and 1800® Series Sprays featuring PRS with Flow Optimizer™ technology on their installations. Test data shows that PRS rotors and sprays can save each property up to 50,000 gallons or more every year helping turn high pressure into lower water bills. Visit www.prs.rainbird.com to watch the video and learn more.
The Florida Irrigation Society took on the monumental task of updating Appendix F for the next edition of the Florida Building Code scheduled to be issued in December 2017. The FIS Board with the assistance of other FIS members reviewed and wrote needed additions to Appendix F related to irrigation. Appendix F is not mandatory but is placed as an Appendix for any jurisdictions to use as a model in developing their own local irrigation ordinances. The wording below was approved for final review by the Building Commission at the April meeting of the Plumbing Technical Advisory Committee. Still under possible consideration for inclusion as a section for irrigation in the Plumbing Code. A final decision will be made in July or August.

PART 1: GENERAL

A. Description.

1. Purpose. To establish uniform minimum standards and requirements for the design and installation of safe, cost effective, reliable irrigation systems for turf and landscape areas which promote the efficient use and protection of water and other natural resources.

2. Definition. Turf and landscape irrigation systems apply water by means of permanent above-ground or subsurface sprinkler or micro-sprinkler equipment under pressure.

3. Scope. These construction codes shall apply to all irrigation systems used on residential and commercial landscape areas. They address the design requirements, water quality, materials, installation, inspection, and testing for such systems. These construction codes do not apply to irrigation systems for golf courses, nurseries, greenhouses, or agricultural production systems.

4. Application. All new irrigation systems and any new work to existing irrigation systems shall conform to the requirements of this code.

5. Application to existing irrigation installations. Nothing contained in this code shall be deemed to require any irrigation system or part thereof, which existed prior to the establishment of this code, to be changed altered or modified to meet the standards of this code.

(continued page 16)
B. Permits.

1. **Permits required.** It shall be unlawful to construct, enlarge, alter, modify, repair, or move any irrigation system or part thereof, or to install or alter any equipment for which provision is made or the installation of which is regulated by this code without first having filed application and obtained a permit therefore from the building official. A permit shall be deemed issued when signed by the building official and impressed with the seal of the governmental agency issuing said permit.

2. **Exceptions.** All work where exempt from permit shall still be required to comply with the code. No permit shall be required for general maintenance or repairs which do not change the structure or alter the system and the value of which does not exceed $600.00 in labor and material based on invoice value.

C. Preconstruction submittals.

1. **Plans or drawings.**

 a. Single-family residence. Provide design drawings or shop drawings, where required, for the installation prior to start of construction. Design drawings shall be clearly readable, to reasonable scale, show the entire site to be irrigated, and include all improvements. Drawings can be prepared by a properly licensed qualified contractor.

 b. Commercial, industrial, municipal and multiple-family. Provide professionally designed drawings prior to start of construction. Design drawings shall be clearly readable, to reasonable scale, show the entire site to be irrigated, including all improvements, and shall include but not be limited to: date, scale, revisions, legend, specifications which list all aspects of equipment and assembly there of, water source, water meter and/or point of connection, backflow prevention devices, pump station size, pump station location, design operating pressure and flow rate per zone, precipitation rate per zone, locations of pipe, controllers, valves, sprinklers, sleeves, gate valves, etc. The plans and specifications shall be prepared in accordance with Section 106 of the Florida Building Code, Building.

D. Definitions.

ABS Pipe. Acrylonitrile-butadiene-styrene black, semi-rigid, plastic pipe extruded to IPS. ABS pipe is in limited use in present day irrigation systems. Solvent weld fittings are used with this pipe (see ASTM D 1788).

Air Release Valve. A valve which will automatically release to the atmosphere accumulated small pockets of air from a pressurized pipeline. A small orifice is used to release air at low flow rates. Air release valves are normally required at all summits of mainline and submain pipelines in an irrigation system.
Anti-Siphon Device. A safety device used to prevent back-flow of irrigation water to the water source by back-siphonage.

Application Rate. The average rate at which water is applied by an irrigation system, sometimes also called precipitation rate. Units are typically inches/hr or mm/hr.

Application Uniformity. Irrigation application uniformity (also known as distribution uniformity) describes how evenly water is distributed within an irrigation zone.

Arc. The angle of coverage of a sprinkler in degrees from one side of throw to the other. A 90-degree arc would be a quarter-circle sprinkler.

Atmospheric Vacuum Breaker. An anti-siphon device which uses a floating seat to direct water flow. Water draining back from irrigation lines is directed to the atmosphere to protect the potable water supply.

Automatic Control Valve. A valve in a sprinkler system which is activated by an automatic controller by way of hydraulic or electrical control lines and controls a single device or multiple devices.

Automatic System. An irrigation system which operates following a preset program entered into an automatic controller.

Backflow Prevention Device. An approved safety device used to prevent pollution or contamination of the irrigation water supply due to backflow from the irrigation system.

Belled (Pipe). Pipe which is enlarged at one end so that the spigot end of another length of pipe can be inserted into it during the assembly of a pipeline.

Block (of sprinklers). A group of sprinklers controlled by one valve. Also called zones or subunits.

Block System. An irrigation system in which several groups of sprinklers are controlled by one valve for each group.

Bubbler Irrigation. The application of water to the soil surface or a container as a small stream or fountain. Bubbler emitter discharge rates are greater than the 0.5 to 2 gph characteristic of drip emitters, but generally less than 60 gph.

Check Valve. A valve which permits water to flow in one direction only.

Chemical Water Treatment. The addition of chemicals to water to make it acceptable for use in irrigation systems.

Chemigation. The application of water soluble chemicals by mixing or injecting with the water applied through an irrigation system.

(continued page 18)
JUST ADD EWING.
If you have a challenge, we have a solution.

IRRIGATION | HARDSCAPE | TURF PRODUCTS EROSION CONTROL
LANDSCAPE LIGHTING RAINWATER HARVESTING and much more.

Clearwater
Tel. 727.441.9530

Fort Walton Beach
Tel. 850.243.0911

Jacksonville
Tel. 904.370.1100

Kissimmee
Tel. 407.847.9817

Orlando
Tel. 407.292.3400

Panama City Beach
Tel. 850.234.0870

Pensacola
Tel. 850.432.9530

Sanford
Tel. 407.330.2112

Sarasota
COMING SOON!

www.ewing1.com/florida
Contractor. Any person who engages in the fabrication and installation of any type of irrigation system on a contractual basis in accordance with all stipulations receiving his compensation.

Control Lines. Hydraulic or electrical lines which carry signals (to open and close the valves) from the controller to the automatic valves.

Controller. The timing mechanism and its mounting box. The controller signals the automatic valves to open and close on a pre-set program or based on sensor readings.

Coverage. Refers to the way water is applied to an area.

Cycle. Refers to one complete run of a controller through all programmed controller stations.

Demand (or irrigation demand). Refers to the irrigation requirements of the irrigated area. Demand primarily depends on the type of crop, stage of growth, and climatic factors.

Design Area. The specific land area to which water is to be applied by an irrigation system.

Design Emission Uniformity. An estimate of the uniformity of water application with an irrigation system.

Design Pressure. The pressure at which the irrigation system or certain components are designed to operate. The irrigation system design pressure is that measured at the pump discharge or entrance to the system if there is no pump, and a zone design pressure is the average operating pressure of all emitters within that zone.

Direct Burial Wire. Plastic-coated single-strand copper wire for use as control line for electric valves.

Discharge Rate. The instantaneous flow rate of an individual sprinkler, emitter, or other water emitting device, or a unit length of line-source micro irrigation tubing. Also, the flow rate from a pumping system.

Double Check Valve. An approved assembly of two single, independently-acting check valves with test ports to permit independent testing of each check valve.

Drain Valve. A valve used to drain water from a line. The valve may be manually or automatically operated.

Drip Irrigation. The precise low-rate application of water to or beneath the soil surface near or directly into the plant root zone. Applications normally occur as small streams, discrete or continuous drops, in the range of 0.5 to 2.0 gph.

Effluent water. Also referred to as reclaimed or gray water is wastewater
which has been treated per Florida Statute, §403.086 and is suitable for use as a water supply for irrigation systems.

Emitters. Devices which are used to control the discharge of irrigation water from lateral pipes. This term is primarily used to refer to the low flow rate devices used in micro irrigation systems.

Fertigation. The application of soluble fertilizers with the water applied through an irrigation system.

Filtration System. The assembly of physical components used to remove suspended solids from irrigation water. These include both pressure and gravity type devices, such as settling basins, screens, media filters, and centrifugal force units (vortex sand separators).

Flexible Swing Joint. A flexible connection between the lateral pipe and the sprinkler which allows the sprinkler to move when force is applied to it.

Flow Meters. Devices used to measure the volume of flow of water (typically in gallons), or flow rates (typically in gpm), and to provide data on system usage.

Gauge (Wire). Standard specification for wire size. The larger the gauge number, the smaller the wire diameter.

Head. A sprinkler head. Sometimes used interchangeably with and in conjunction with “Sprinkler.”

Infiltration Rate. The rate of water flow across the surface of the soil and into the soil profile. Units are usually inches/hr.

Irrigation. Application of water by artificial means, that is, means other than natural precipitation. Irrigation is practiced to supply crop water requirements, leach salts, apply chemicals, and for environmental control including crop cooling and freeze protection.

Irrigation Water Requirement or Irrigation Requirement The quantity of water that is required for crop production, exclusive of effective rainfall.

Landscape. Refers to any and all areas which are ornamentally planted, including but not limited to turf, ground covers, flowers, shrubs, trees, and similar plant materials as opposed to agricultural crops grown and harvested for monetary return.

Lateral. The water delivery pipeline that supplies water to the emitters or sprinklers from a manifold or header pipeline downstream of the control valve.

Line-Source Emitters. Lateral pipelines which are porous or contain closely-spaced perforations so that water is discharged as a continuous band or in overlapping patterns rather than discrete widely-spaced
points along the pipeline length.

Looped System. A piping system which allows more than one path for water to flow from the supply to the emitters or sprinklers.

Low Volume Sprinklers. Sprinkler heads that emit less than .5 gallons per minute.

Mainline. A pipeline which carries water from the control station to submains or to manifolds or header pipelines of the water distribution system.

Manifold. The water delivery pipeline that conveys water from the main or submain pipelines to the laterals. Also sometimes called a header pipeline.

Manual System. A system in which control valves are manually operated rather than operated by automatic controls.

Matched Precipitation. An equal distribution of water over a given area or zone.

Meter Box. A concrete or plastic box buried flush to grade which houses flow (water) meters or other components.

Microirrigation. The frequent application of small quantities of water directly on or below the soil surface, usually as discrete drops, tiny streams, or miniature sprays through emitters placed along the water delivery pipes (laterals). Microirrigation encompasses a number of methods or concepts, including drip, subsurface, bubbler, and spray irrigation. Previously known as trickle irrigation.

Overlap. The amount one sprinkler pattern overlaps another one when installed in a pattern. Expressed as a percentage of the diameter of coverage.

Potable Water. Water which is suitable in quality for human consumption and meets the requirements of the Health Authority having jurisdiction.

Pressure Relief Valve. A valve which will open and discharge to atmosphere when the pressure in a pipeline or pressure vessel exceeds a pre-set point to relieve the high-pressure condition.

Pressure Vacuum Breaker. A backflow prevention device which includes a spring-loaded check valve and a spring-loaded vacuum breaker to prevent the backflow of irrigation system water to the water source.

(continued page 22)
Pumping Station. The pump or pumps that provide water to an irrigation system, together with all of the necessary accessories such as bases or foundations, sumps, screens, valves, motor controls, safety devices, shelters and fences.

PVC Pipe. Polyvinyl chloride plastic pipe made in standard thermoplastic pipe dimension ratios and pressure rated for water. Manufactured in accordance with AWWA C-900 or ASTM D-2241.

Rain Shut off Device. A calibrated device that is designed to detect rainfall and override the irrigation cycle of the sprinkler system when a predetermined amount of rain fall has occurred.

Riser. A threaded pipe to which sprinklers or other emitters are attached for above-ground placement.

Sleeve. A pipe used to enclose other pipes, wire, or tubing; usually under pavement, sidewalks, or planters.

Spacing. The distance between sprinklers or other emitters.

Spray Irrigation. The micro irrigation application of water to the soil or plant surface by low flow rate sprays or mists.

Sprinkler. The sprinkler head. Sometimes called “Head.”

Supply (Water Source). The origin of the water used in the irrigation system.

Swing Joint. A ridged connection between the lateral pipe and the sprinkler, utilizing multiple ells and nipples, which allows the sprinkler to move when force is applied to it.

Tubing. Generally used to refer to flexible plastic hydraulic control lines which are usually constructed of PE or PVC.

PART II — DESIGN CRITERIA

A. Design defined. Within the scope of this code, irrigation system design is defined as the science and art of properly selecting and applying all components within the system. The irrigation system shall be designed and installed to achieve the highest possible efficiency by providing operating pressures, sprinkler placement and nozzle selection that are within the manufacture’s recommendations, and maintained to keep the system at or within those ranges.

B. Water supply.

1. The water source shall be adequate from the stand-point of volume, flow rate, pressure, and quality to meet the irrigation requirements of the area to be irrigated, as well as other demands, if any, both at the time the system is designed and for the expected life of the system. The irrigation system shall use the lowest quality water source available on site.

(continued page 24)
For 100 years, Toro has built a legacy of innovation. Our recent awards from the Irrigation Association™ demonstrate how this spirit lives on today. Based on customer feedback, we continue to raise the bar with new practical solutions that save time, money and water. To learn more about how Toro is “changing the game” in smart irrigation, visit us at: www.toro.com/irrigation
2. If the water source is effluent, it shall meet the advanced waste treatment standard as set forth in Florida Statute §403.086(4) as well as any other standard as set forth by the controlling governmental agency.

C. Application uniformity.
1. Sprinkler irrigation systems should be designed with the appropriate uniformity for the type of plants being grown and the type of soil found in that area. The general watering of different types of plants as one group without regard to their individual water requirements is to be avoided.

2. Use sprinkler head spacing, type and nozzle selection to achieve the highest application uniformity.

3. Use application rates which avoid runoff and permit uniform water infiltration into the soil. Land slope, soil hydraulic properties, vegetative ground cover, and prevailing winds and sun exposure will be considered when application rates are specified. Different types of sprinklers with different application rates, i.e., spray heads vs. rotor heads, bubbler heads vs rotor heads, shall not be combined on the same zone or circuit.

D. System zoning. The irrigation system should be divided into zones based on consideration of the following hydrozoning practices.
1. Available flow rate.
2. Cultural use of the area.
3. Type of vegetation irrigated, i.e., turf, shrubs, native plants, etc.
4. Type of sprinkler, i.e., sprinklers with matching precipitation rates.
5. Soil characteristics and slope.
6. Sun exposure.

E. Sprinkler/emitter spacing and selection.
1. Sprinkler/Emitter spacing will be determined considering the irrigation requirements, hydraulic characteristics of the soil and device, and water quality with its effect on plant growth, sidewalks, buildings, and public access areas.

2. All pop-up spray head bodies in turf areas shall be no less than 6” in height for St. Augustine, Zoysia and Bahia and no less than 4” in height for Bermuda, Centapede and Seashore Paspalum.

3. Sprinklers should be located in all corners and on the perimeter of each irrigated zone area for a matched precipitation rate objective.
4. Single row head spacing should only occur when an additional row will cause saturated soils at the toe of a slope or other inefficiencies.

5. All heads shall not exceed 50% of manufacturer’s specified diameters of coverage.

6. Water conservation will be emphasized by minimizing irrigation of non-vegetated areas.

7. Microirrigation systems should be designed using the Emission Uniformity concept. Space microirrigation emitters to wet 100 percent of the root zone in turf areas and 50 percent of the root zone for shrubs and trees.

8. Microirrigation or low volume heads shall be required in all areas less than 4 feet in either direction.

9. All microirrigation zones shall have adequate filtration installed at the zone valve or at the point where the drip tubing is attached to PVC pipe to protect the emission devices from contamination from a PD main or lateral break.

10. Each plant shall have an adequate number and size (gph) of microirrigation devices, properly placed, to meet the plant water requirements for no rainfall.

F. Pipelines. Pipelines will be sized to limit pressure variations so that the working pressure at all points in the irrigation system will be in the range required for uniform water application. Velocities will be kept to 5 feet (1524 mm) per second.

G. Wells.

1. Well diameters and depths are to be sized to correspond to the irrigation system demand. Refer to SCS Code FL-642 and local water management district regulations.

2. Well location and depth shall be in compliance with applicable state, water management district and local codes.

H. Pumps.

1. Pump and motor combinations shall be capable of satisfying the total system demand without invading the service factor of the motor except during start-up and between zones.

2. Pumps shall be positioned with respect to the water surface in order to ensure that the net positive suction head required (NPSHr) for proper pump operation is achieved.

3. The pumping system shall be protected against the effects of the interruption of water flow.

(continued page 26)
I. Control valves.

1. Control valve size shall be based on the flow rate through the valve. Friction loss through the valve, an approved air gap separation, or a reduced pressure should not exceed 10 percent of the static mainline head.

2. Control systems using hydraulic communication between controller and valve(s) shall comply with the manufacturer’s recommendations for maximum distance between controller and valve, both horizontally and vertically (elevation change).

3. The size of the electrical control wire shall be in accordance with the valve manufacturer’s specifications; based on the solenoid in-rush amperage and the circuit length, considering the number of solenoids operating on the circuit. Minimum of # 14 AWG single strand control wire shall be used on all systems, except individual, single lot residential systems.

4. Locate manually operated control valves so that they can be operated without wetting the operator.

5. Locate inground valves away from large tree and palm root zones.

6. A manual shut off valve shall be required to be installed close to the point of connection but downstream from any backflow device to minimize water loss when the system is shut off for repairs or emergencies.

7. An automatic shut-off valve (normally closed) is required on all systems with a constantly pressurized mainline to confine the water loss from minor main line leaks, weeping valves, or stuck on valves to just the time the system is operating automatically.

J. Automatic irrigation controller. Automatic irrigation controllers must be UL approved and have an adequate number of stations and power output per station to accommodate the irrigation system design. The controller shall be capable of incorporating a rain shut off device or other sensors to override the irrigation cycle when adequate rainfall has occurred as required by Florida Statutes, Section 373.62.

K. Chemical injection.

1. Chemical injection systems for the injection of fertilizer, pesticides, rust inhibitors, or any other injected substance will be located and sized according to the manufacturers’ recommendations.

2. Injection systems will be located downstream of the applicable backflow prevention devices as required by Florida Statutes, Section 487.021 and 487.055; the Environmental Protection Agency (EPA);
Pesticide Regulation Notice 87-1; or other applicable codes.

3. If an irrigation water supply is also used for human consumption, an air gap separation or an approved reduced pressure principal backflow prevention device is required.

L. Backflow prevention methods. Provide backflow prevention assemblies at all cross connections with all water supplies in accordance with county, municipal or other applicable codes to determine acceptable backflow prevention assembly types and installation procedures for a given application. In the event of conflicting regulation provide the assembly type which gives the highest degree of protection.

1. Irrigation systems into which chemicals are injected shall conform to Florida state law (Florida Statutes 487.021 and 487.055) and Environmental Protection Agency Pesticide Regulation Notice 87-1, which requires backflow prevention regulations to be printed on the chemical label.

2. For municipal water supplies, chemical injection equipment must be separated from the water supply by an approved air gap separation or a reduced pressure principle assembly that is approved by the Foundation for CCC and the Hydraulic Research Institute. The equipment must also comply with ASSE 1013 to protect the water supply from back-siphonage and back-pressure.

3. For other water supplies, Florida State law, EPA regulations, or other applicable local codes must be followed. In the absence of legal guidelines at least a PVB should be used.

PART III — STANDARDS
1. American Society of Agricultural Engineers (ASAE) Standards:

 ASAE S330.1: Procedure for sprinkler distribution testing for research purposes.

 ASAE S376.1: Design, installation, and performance of underground thermoplastic irrigation pipelines.

 ASAE S397.1: Electrical service and equipment for irrigation.

 ASAE S435: Drip/Trickle Polyethylene Pipe used for irrigation laterals.

 ASAE S398.1: Procedure for sprinkler testing and performance reporting.

 ASAE S339: Uniform classification for water hardness.

 ASAE S394: Specifications for irrigation hose and couplings used with self-propelled, hose-drag agricultural irrigation system.

(continued page 28)
ASAE EP400.1: Designing and constructing irrigation wells.

ASAE EP409: Safety devices for applying liquid chemicals through irrigation systems.

2. ASTM International Standards:

ASTM D 2239: Specification for polyethylene (PE) plastic pipe (SDR-PR).

ASTM D 2466: Specification for socket-type poly (vinyl chloride) (PVC) and chlorinated poly (vinyl chloride) (CPVC) plastic pipe fittings, Schedule 40.

ASTM D 2855: Standard recommended practice for making solvent cemented joints with polyvinyl chloride pipe and fittings.

ASTM D 3139: Specification for joints for plastic pressure pipes using flexible elastomeric seals.

ASTM F 477: Specification for elastomeric seals (gaskets for joining plastic pipe).

3. American Water Works Association (AWWA) standards:

AWWA C-900: PVC pipe standards and specifications

4. American Society of Sanitary Engineers (ASSE) Standards:

ASSE 1001: Pipe applied atmospheric type vacuum breakers.

ASSE 1013: Reduced pressure principle backflow preventers.

ASSE 1015: Double check valve type back pressure backflow preventers.

ASSE 1020: Vacuum breakers, anti-siphon, pressure type.

ASSE 1024: Dual check valve type backflow preventers.

5. Hydraulic Institute Standards, 14th Edition

6. Standards and Specifications For Turf and Landscape Irrigation Systems Florida Irrigation Society (FIS) Standards

7. Soil Conservation Service (SCS) Field Office Technical Guide, Section IV-A — Cropland Codes:

SCS Code 430-DD: Irrigation water conveyance, underground, plastic pipeline.
SCS Code 430-EE: Irrigation water conveyance. Low pressure, underground, plastic pipeline.

SCS Code 430-FF: Irrigation water conveyance, steel pipeline.

SOS Code 441-1: Irrigation system, trickle.

SCS Code 442: Irrigation system sprinkler.

SCS Code 449: Irrigation water management.

SCS Code 533: Pumping plant for water control.

SCS Code 642: Well.

PART IV: MATERIALS

A. PVC pipe and fittings.

1. PVC pipe should comply with one of the following standards ASTM D 1785, ASTM D 2241, AWWA C-900, or AWWA C-905. SDR-PR pipe shall have a minimum wall thickness as required by SDR-26. All pipe used with effluent water systems shall be designated for nonpotable use by either label or by the industry standard color purple.

2. All solvent-weld PVC fittings shall, at a minimum, meet the requirements of Schedule 40 as set forth in ASTM D 2466.

3. Threaded PVC pipe fittings shall meet the requirements of Schedule 40 as set forth in ASTM D 2464.

4. PVC gasketed fittings shall conform to ASTM D 3139. Gaskets shall conform to ASTM F 477.

5. PVC flexible pipe should be pressure rated as described in ASTM D 2740 with standard outside diameters compatible with PVC IPS solvent-weld fittings.

6. PVC cement should meet ASTM D 2564. PVC cleaner-type should meet ASTM F 656.

B. Ductile iron pipe and fittings.

1. Gasket fittings for iron pipe should be of materials and type compatible with the piping material being used.

C. Steel pipe and fittings.

1. All steel pipe shall be rated Schedule 40 or greater and be hot-dipped galvanized or black in accordance with ASTM 53.

2. Threaded fittings for steel pipe should be Schedule 40 Malleable Iron.

D. Polyethylene pipe.

1. Flexible swing joints shall be thick-walled with a minimum pressure (continued page 30)
rating of 75 psi (517 kPa) in accordance with ASTM D 2239.

2. Low pressure polyethylene pipe for micro-irrigation systems shall conform with ASAE S-435.

3. Use fittings manufactured specifically for the type and dimensions of polyethylene pipe used. E. Sprinklers, spray heads, and emitters. Select units and nozzles in accordance with the size of the area and the type of plant material being irrigated. Sprinklers must fit the area they are intended to water without excessive overspray onto anything but the lot individual landscaped surface. Intentional direct spray onto walkways, buildings, roadways, and drives is prohibited. All sprinklers used with effluent water systems shall be designated for non-potable use by either label or by the industry standard color purple.

Use equipment that is protected from contamination and damage by use of seals, screens, and springs where site conditions present a potential for damage.

Support riser-mounted sprinklers to minimize movement of the riser resulting from the action of the sprinkler.

Swing joints, either flexible or rigid, shall be constructed to provide a leak-free connection between the sprinkler and lateral pipeline to allow movement in any direction and to prevent equipment damage.

Check valves shall be installed on any sprinkler where low point drainage occurs.

All tubing shall be installed under ground cover using staples at close enough intervals (24-36”) to secure the tubing and prevent it from moving through the mulch bed.

F. Valves.
1. Valves must have a maximum working pressure rating equal to or greater than the maximum pressure of the system, but not less than 125 psi (861 kPa). This requirement may be waived for low mainline pressure systems [30 psi (207 kPa) or less]. All valves used with effluent water systems shall be designated for non-potable use by either label or by the industry standard color purple.

2. Only valves that are constructed of materials designed for use with the water and soil conditions of the installation shall be used. Valves that are constructed from materials that will not be deteriorated by chemicals injected into the system shall be used on all chemical injection systems.

G. Valve boxes.
1. Valve boxes are to be constructed to withstand traffic loads common to the area in which they are installed. They should be sized.
to allow manual operation of the enclosed valves without excavation.

2. Each valve box should be permanently labeled to identify its contents. All valve boxes used with effluent water systems shall be designated for non-potable use by either label or by the industry standard color purple.

H. Low voltage wiring.

1. All low voltage wire which is directly buried must be labeled for direct burial wire. Wire not labeled for direct burial must be installed in watertight conduits, and be UL listed TWN or THHN type wire as described in the NEC. All wire traveling under any hardscape or roadway must install within a pipe and sleeve.

2. The size of the electrical control wire shall be in accordance with the valve manufacturer’s specifications, based on the solenoid in-rush amperage and the circuit length, considering the number of solenoids operating, on the circuit. Minimum of # 14 AWG single strand control wire shall be used on all systems, except single lot individual residential systems.

3. Connections are to be made using UL approved devices specifically designed for direct burial. All splices shall be enclosed within a valve box.

I. Irrigation controllers.

1. All irrigation controllers shall be UL listed, conform to the provisions of the National Electric Code (NEC), and be properly grounded in accordance with manufacturer’s recommendations. Equip solid state controls with surge suppressors on the primary and secondary wiring, except single lot residential systems.

2. The controller housing or enclosure shall protect the controller from the hazards of the environment in which it is installed.

3. The rain switch shall be placed on a stationary structure minimum of 5-foot (1524 mm) clearance from other outdoor equipment, free and clear of any tree canopy or other overhead obstructions, and above the height of the sprinkler coverage. Soil moisture sensors and ET sensors shall be installed and monitored per manufacturer’s guidelines per Florida Statutes, Section 373.62 requirements.

J. Pumps and wells.

1. Irrigation pump electrical control systems must conform to NEC and local building codes.

2. The pumping system shall be protected from the hazards of the environment in which it is installed.

3. Use electric motors with a nominal horsepower rating greater than
the maximum horsepower requirement of the pump during normal operation. Motor shall have a service factor of at least 1.15.

4. Casings for drilled wells may be steel, reinforced plastic mortar, plastic, or fiberglass pipe. Only steel pipe casings shall be used in driven wells. Steel pipe must have a wall thickness equal to or greater than Schedule 40. See SCS code FL-642. Steel casings shall be equal to or exceed requirements of ASTM A 589.

K. Chemical injection equipment.
1. Chemical injection equipment must be constructed of materials capable of withstanding the potential corrosive effects of the chemicals being used. Equipment shall be used only for those chemicals for which it was intended as stated by the injection equipment manufacturer.

L. Filters and strainers.
1. Filtration equipment and strainers constructed of materials resistant to the potential corrosive and erosive effects of the water shall be used. They shall be sized to prevent the passage of foreign material that would obstruct the sprinkler/emitter outlets in accordance with the manufacturer’s recommendations.

PART V: INSTALLATION

A. Pipe installation.
1. Pipe shall be installed at sufficient depth below ground to protect it from hazards such as vehicular traffic or routine occurrences which occur in the normal use and maintenance of a property. Depths of cover shall meet or exceed SCS Code 430-DD, Water Conveyance, as follows:

 a. Vehicle traffic areas

<table>
<thead>
<tr>
<th>Pipe Size (inches)</th>
<th>Depth of Cover (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-2 1/2</td>
<td>18-24</td>
</tr>
<tr>
<td>3-5</td>
<td>24-30</td>
</tr>
<tr>
<td>> 6</td>
<td>30-36</td>
</tr>
</tbody>
</table>

 b. All areas except vehicle traffic:

<table>
<thead>
<tr>
<th>Pipe Size (inches)</th>
<th>Depth of Cover (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-1 1/2</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
</tr>
<tr>
<td>4-6</td>
<td>18</td>
</tr>
<tr>
<td>> 6</td>
<td>24</td>
</tr>
</tbody>
</table>
K-Rain’s Intelligent Flow Technology™ addresses the important concepts of water conservation, landscape and irrigation system design flexibility and contractor time-management. This patented technology allows the reduction of distance while simultaneously and proportionately reducing the flow rate up to 50%. Dry, easy and accurate distance control without the need to change nozzles or employ a break-up screw! In addition, experience water savings of 30% or more!

FREE SAMPLE! Go to: www.krain.com/rps75i to request your free RPS 75i sample today!
2. Make all pipe joints and connections according to manufacturer’s recommendations. Perform all solvent-weld connections in accordance with ASTM D 2855.

3. Minimum clearances shall be maintained between irrigation lines and other utilities. In no case shall one irrigation pipe rest upon another. Comingling or mixing of different types of pipe assemblies shall be prohibited.

4. Thrust blocks must be used on all gasketed PVC systems. They must be formed against a solid, hand-excavated trench wall undamaged by mechanical equipment. They shall be constructed of concrete, and the space between the pipe and trench shall be filled to the height of the outside diameter of the pipe. Size thrust blocks in accordance with ASAE S-376.1.

5. The trench bottom must be uniform, free of debris, and of sufficient width to properly place pipe and support it over its entire length. Native excavated material may be used to backfill the pipe trench. However, the initial backfill material shall be free from rocks or stones larger than 1-inch in diameter. At the time of placement, the moisture content of the material shall be such that the required degree of compaction can be obtained with the backfill method to be used. Blocking or mounding shall not be used to bring the pipe to final grade.

6. Pipe sleeves must be used to protect pipes or wires installed under pavement or roadways. Use pipe sleeves two pipe sizes larger than the carrier pipe or twice the diameter of the wire bundle to be placed under the paving or roadway and extending a minimum of 3 feet beyond the paved area or as required by the Florida Department of Transportation (FDOT). Use sleeve pipe with wall thickness at least equal to the thickness of schedule 40 or PR 160 pipe, whichever is thicker. Proper backfill and compaction procedures should be followed.

B. Control valve installation.

1. Valve installation shall allow enough clearance for proper operation and maintenance. Where valves are installed underground, they shall be provided with a valve box with cover extending from grade to the body of the valve. The top of the valve body should have a minimum of 6 inches (152 mm) of cover in nontraffic and noncultivated areas and 18 inches (457 mm) of cover in traffic areas. The valve box shall be installed so as to minimize the effect of soil intrusion within the valve box with the use of filter fabric, pea gravel, or other acceptable material. If an automatic valve is installed under each sprinkler, then the valve box may be omitted.

2. Install valve boxes so that they do not rest on the pipe, the box cover does not conflict with the valve stem or interfere with valve operation, they are flush with the ground surface and do not present a tripping hazard or interfere with routine maintenance of the landscape.
3. Install quick coupling valves on swing joints or flexible pipe with the top of the valve at ground level.

4. Any above-ground manually-operated valves on nonpotable water systems will be adequately identified with distinctive purple colored paint. Do not provide hose connections on irrigation systems that utilize nonpotable water supplies.

C. Sprinkler installation.

1. On flat landscaped areas, install sprinklers plumb. In areas where they are installed on slopes, sprinklers may be tilted as required to prevent erosion.

2. Sprinklers should be adjusted to avoid unnecessary discharge on pavements and structures.
 a. Adjust sprinklers so they do not water on roads.
 b. Provide a minimum separation of 4 inches (102 mm) between sprinklers and pavement.
 c. Provide a minimum separation of 12 inches (305 mm) between sprinklers and buildings and other vertical structures.
 d. Polyethylene (PE) nipples shall not be used in maintenance equipment traffic areas or alongside roadways and driveways.

3. Piping must be thoroughly flushed before installation of sprinkler nozzles.

4. Surface mounted and pop-up heads shall be installed on swing joints or flexible pipe.

5. Above-ground (riser mounted) sprinklers shall be mounted on Schedule 40 PVC or steel pipe and be effectively stabilized.

6. The pop-up height for sprays and rotator nozzles shall be adequate to prevent being obstructed by the turf grass blades: 6” height for St. Augustine, Zoysia and Bahia, 4” height for Bermuda, Centapede and Seashore Paspalum.

7. All microirrigation zones shall have adequate filtration installed at the zone valve or at the point where the drip tubing is attached to PVC pipe to protect the emission devices from contamination from a PVC main or lateral break.

8. All microirrigation zones shall have adequate pressure regulation installed at the zone valve or at the point where the drip tubing is attached to the PVC to ensure that all emission devices meet the manufacturer’s performance standards.

(continued page 36)
9. Each plant shall have an adequate number and size (gph) of microirrigation devices, properly placed to meet the plant water requirements for no rainfall.

10. All tubing shall be installed under ground cover using staples at close enough intervals (24-36") to secure the tubing and prevent it from moving through the mulch bed.

D. Pump installation.

1. Install pumps as per the manufacturer’s recommendations. Set pumps plumb and secure to a firm concrete base. There should be no strain or distortion on the pipe and fittings. Pipe and fittings should be supported to avoid placing undue strain on the pump. Steel pipe should be used on pumps 5 horsepower (hp) or larger whenever practical.

2. Pumps must be installed in a manner to avoid loss of prime. Install suction line to prevent the accumulation of air pockets. All connections and reductions in suction pipe sizes should be designed to avoid causing air pockets and cavitation.

3. Pumps must be located to facilitate service and ease of removal. Appropriate fittings should be provided to allow the pump to readily be primed, serviced, and disconnected. Provide an enclosure of adequate size and strength, with proper ventilation, to protect the pump from the elements (except residential systems).

E. Low voltage wire installation.

1. Install low voltage wire (less than 98 volts) with a minimum depth of cover of 12 inches (305 mm) where not installed directly under the mainline.

2. Provide a sufficient length of wire at each connection to allow for thermal expansion/shrinkage.

3. As a minimum, provide a 12-inch (305 mm) diameter loop at all splices and connections.

4. Terminations at valves will have 24 inches (610 mm) minimum free wire.

5. Install all above-ground wire runs and wire entries into buildings in electrical conduit.

Exception: No conduit is required when wiring above ground manifolds from the valve to the ground immediately beneath it.

6. Provide common wires with a different color than the power wires (white shall be used for common wires).

7. Connections are to be made using UL approved devices specifically designed for direct burial.
8. All splices shall be enclosed within a valve box.

F. Hydraulic control tubing.

1. For hydraulic control systems, use a water supply that is filtered and free of deleterious materials, as defined by the hydraulic control system manufacturer. Install a backflow prevention device where the hydraulic control system is connected to potable water supplies.

2. Install tubing in trenches freely and spaced so that it will not rub against pipe, fittings, or other objects that could score the tubing, and with a minimum 12-inch (305 mm) diameter loop at all turns and connections. Provide a minimum depth of cover of 12 inches (305 mm).

3. Connect tubing with couplings and collars recommended by the tubing manufacturer. All splices shall be made in valve boxes. Prefill tubing with water, expelling entrapped air and testing for leaks prior to installation.

Install exposed tubing in a protective conduit manufactured from Schedule 40 UV protected PVC or electrical conduit.

PART VI: TESTING & INSPECTIONS

A. Purpose. All materials and installations covered by the Irrigation Code shall be inspected by the governing agency to verify compliance with the Irrigation Code.

B. Rough inspections. Rough inspections will be performed throughout the duration of the installation. These inspections will be made by the governing agency to ensure that the installation is in compliance with the design intent, specifications, and the Irrigation Codes. Inspections will be made on the following items at the discretion of the governing agency:

1. Sprinkler layout and spacing: This inspection will verify that the irrigation system design is accurately installed in the field. It will also provide for alteration or modification of the system to meet field conditions. To pass this inspection, sprinkler/emitter spacing should be within ± 5 percent of the design spacing.

2. Pipe installation depth: All pipes in the system shall be installed to depths as previously described in this code.

3. Test all mainlines upstream of the zone valves as follows:

 a. Fill the completely installed pipeline slowly with water to expel air. Allow the pipe to sit full of water for 24 hours to dissolve remaining trapped air.

 b. Using a metering pump, elevate the water pressure to the maximum static supply pressure expected and hold there for a period of 2 hours, solvent-weld pipe connections shall have no leakage.

(continued page 38)
c. For gasketed pipe main lines add water as needed to maintain the pressure. Record the amount of water added to the system over the 2-hour period.

d. Use the following formulas to determine the maximum allowable leakage limit of gasketed pipe.

DUCTILE IRON:

\[
L = \frac{SDP}{133,200}
\]

PVC, GASKETED JOINT:

\[
L = \frac{NDP}{7,400}
\]

Where:

- \(L\) = allowable leakage (gph),
- \(N\) = number of joints,
- \(D\) = nominal diameter of pipe (inches),
- \(P\) = average test pressure (psi), and
- \(S\) = length of pipe (ft).

e. When testing a system which contains metal-seated valves, an additional leakage per closed valve of 0.078 gph/inch of nominal valve size is allowed.

C. Final inspection. When the work is complete the contractor shall request a final inspection.

1. Cross connection control and backflow prevention.

 a. Public or domestic water systems: Check that an approved backflow prevention assembly is properly installed and functioning correctly. Review the location of the assembly to check that it is not creating a hazard to pedestrians or vehicular traffic.

 b. Water systems other than public or domestic water systems: Check that the proper backflow prevention assemblies are provided.

 c. All assemblies that can be, will be tested by a technician certified for back flow testing by a State recognized certifying board prior to being placed into service.

2. Sprinkler coverage testing.

 a. All sprinklers must be adjusted to minimize overspray onto buildings and paved areas. Minor tolerances shall be made to allow...
for prevailing winds.

b. All sprinkler controls must be adjusted to minimize runoff of irrigated water. Water application rates shall not exceed the absorption rate of the soil.

c. All sprinklers must operate at their design radius of throw. Nozzle sizes and types called for in the system design must have been used. All nozzles within the same zone shall have matched precipitation rates unless otherwise directed in order to increase efficiency by adjusting the nozzle selection to match site conditions.

d. Spray patterns must overlap as designed (a.k.a. head to head coverage) or placed to achieve the highest possible distribution uniformity using the manufacturer’s specifications.

e. Sprinklers must be connected, as designed, to the appropriate zone.

f. Sprinkler heads must operate within 20% of the optimum operating pressure but not more than the maximum nor less than the minimum guidelines as specified by the manufacturer. If the dynamic water pressure at the site’s water source(s) is too low to achieve this pressure range at the sprinklers, a booster pump or alternate source shall be required. If the dynamic water pressure at the site’s water source(s) is too high to achieve this pressure range at the sprinklers, a pressure regulating device shall be required at either the source, the zone valve, or the sprinklers, or any combination there of.

D. Site restoration.

1. All existing landscaping, pavement, and grade of areas affected by work must be restored to original condition or to the satisfaction of the governing authority.

Verify that the pipeline trenches have been properly compacted to the densities required by the plans and specifications

E. Record Drawings.

1. A record drawing shall be required of all irrigation systems installed on commercial and residential developments and shall contain the following information:

a. Location, type pressure and maximum flow available of all water sources. Include limitations like days of week watering requirements.

b. Location type and size of all components including sprinklers, microirrigation, main and lateral piping, master valves, valves, moisture sensors, rain sensors, controllers, pump start relays, backflow devices, pumps, wells, etc.

(continued page 40)
c. The flow rate, application rate (inches per hour), and the operating pressure for the sprinklers and micro irrigation within each zone.

d. An irrigation schedule for each zone, for each season (monthly is preferred), indicating the frequency and duration each zone should operate to meet the plant water requirements without rainfall and stay within the hydraulic capacities of the sprinkler system installed.

e. The name, address, phone, email, professional license or certification number of the installation contractor.

f. Date of installation.

g. Irrigation system maintenance schedule that shall include, but is not limited to the following:

1. routine visual inspections (at least 4 per year),

2. adjustments to components to keep sprinklers straight, at the right height,

3. aligned and unobstructed nozzles and screens cleaned,

4. filters cleaned and sensors monitored,

5. pressures and flows at the source and sprinklers are correct for original design.

F. Irrigation System Maintenance

a. Repairs to all irrigation components shall be done with originally installed components, equivalent components or those with greater efficiency.

b. The operation of the irrigation system outside of the normal watering window shall be allowed for evaluating, maintaining or repairing the system or its components.

G. Irrigation system management

a. The frequency (times per week/month) and duration (minutes/hours) of the operation of each zone shall be adjusted and operate in order to meet the water needs of the plants within each zone as a supplement to rainfall. Adjustments shall be made a minimum 4 times per year to match the seasonal changes of the plants and the operational restrictions.

b. It is recommended that the schedule be adjusted monthly or controllers be properly installed and programmed to automatically adjust to maximize water savings.
UPCOMING INDUSTRY EVENTS

2016 Florida Water Summit
June 22-24, 2016 - Jupiter Resort and Spa
Jupiter, FL -- To register, visit www.fisstate.org, click on the Water Summit link

Irrigation Association – Irrigation Show & Education Conference
December 5-9, 2016
Las Vegas, NV

Irrigation Association – Irrigation Show & Education Conference
November 17-21, 2017
Orlando, FL

Visit www.fisstate.org for additional event/education information
Submit your industry events for consideration to pipeline@fisstate.org

Florida Irrigation Society is proudly celebrating its 50th Anniversary
Come visit us at
WWW.FISSTATE.ORG
READY TO ADVERTISE!

To receive this year's Media Guide or have questions ... contact our office at 727-209-1595 or email us at administration@fisstate.org.
Reliable, trouble-free irrigation control that requires absolutely...

- No AC Power
- No Batteries
- No External Solar Panels

Now for every application, use any of these advanced, waterproof, water-management controllers, powered by ambient light:

- LEIT 4000
- LEIT X
- LEIT XRC
MEMBERSHIP APPLICATION

APPLICATION FOR MEMBERSHIP

I am: A New Member [] Renewing my Membership []

Note: All new applications are considered pending until approved by the Board of Directors at the next scheduled meeting.

Company: ___________________________ Phone: ___________________________
Address: ___________________________ Fax: ___________________________
City: ________________ State: ____________ Zip: ____________ County: ___________________________
Voting Representative: ___________________________

For new applications:
Please list sponsor or Member Company:
Would you like information about your local chapter: [] Yes [] No

For renewal applications:
If you are a renewing member, please list chapter affiliation here: ___________________________
If you are renewing, please indicate most recent membership year: ___________________________

Please indicate your Category and enclose relevant dues

<table>
<thead>
<tr>
<th>Category</th>
<th>Annual Dues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Manufacturer</td>
<td>$330.00</td>
</tr>
<tr>
<td>B Distributor</td>
<td>$275.00</td>
</tr>
<tr>
<td>C Contractor</td>
<td>$200.00</td>
</tr>
<tr>
<td>D Consultant, P.E., L.A.</td>
<td>$200.00</td>
</tr>
<tr>
<td>E Irrigation System Operator</td>
<td>$200.00</td>
</tr>
<tr>
<td>F Associate</td>
<td>$50.00</td>
</tr>
<tr>
<td>G Technical</td>
<td>$50.00</td>
</tr>
<tr>
<td>H Student</td>
<td>$10.00</td>
</tr>
<tr>
<td>I Supporting</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

Helpful Category Information:

*Associate Members are employees of current FIS Member firms in categories A-E.
*Technical Members are individuals employed by educational institutions or governmental agencies.
*Students retain all Membership rights except voting Representation.
*Supporting Members are individuals that wish to be members that are not in the irrigation industry. (Example: Insurance Agents, Auto Dealers, etc.)

Please tell us about yourself so we can better serve your specific industry needs

___ Installer of Irrigation Systems
___ Dealer in irrigation equipment
___ Distributor in irrigation equipment
___ Irrigation System Design only
___ Manufacturer
___ Well Driller
___ Operator of Irrigation Systems
___ Registered Professional Engineer
___ Registered Landscape Architect
___ Certified IA Designer
___ Certified Landscape Irrigation Auditor
___ Other Certifications:_______________________

If your business is located in a county that requires an irrigation contractor license through testing, please provide your license number and county for Membership Directory listing.

License #: ___________________________ County: ___________________________

Applicant Signature & Date ___________________________ Sponsor Signature & Date (New Members Only) ___________________________

Payment may be made by check or credit card. Make Check payable to Florida Irrigation Society or go to www.fisstate.org to pay by credit card.

Questions? Call the Society at 727-209-1595 or visit our Web site at www.fisstate.org
Last year, Armando told me he was making less on his bottom line and asked for ideas to turn that around. I told him about smart water products and practices, and gave him some tools to help him talk to his clients.

Now his profit has jumped 20% and his clients are thrilled with their lower water bills!

At Horizon, we believe that every month should be treated as Smart Irrigation Month. So, where do you start your practice of Smart Irrigation? Right here.

Talk to your local Horizon representative for tips and ideas on how to increase your bottom line with smart water products.

Visit your local Horizon, or scan here to shop online with 24/7. Anywhere. Anytime. Any Device.

Boynton Beach. 561.533.1441
7700 High Ridge Rd
Ft. Pierce 772.465.1966
3605 Oleander Ave.
Stuart 772.287.9905
3066 Gran Park Way
Lake Park 561.863.5580
850 15th St.